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The time-independent wave packet reactgrbduct decoupling (TIWRPD) method is a new method for
calculating state-to-state reaction probabilities, which we recently developed by extending the originatreactant
product decoupling method of Peng and Zhang (Peng, T.; Zharg, J. Z.Ghem. Phys1996 105 6072;

Zhu, W.; Peng, T.; Zhang, J. Z. H. Chem. Physl997, 106, 1742). In the TIW-RPD method, the nuclear
dynamics Schroedinger equation is partitioned into a set of completely decoupled equations, each of which
describes the nuclear dynamics in either the reactant channel, one of the product channels, or the strong-
interaction region. In this paper we apply the TRRPD method to the (three-dimensional)-tiHF — LiF

+ H (J = 0) reaction. We also describe an improvement to the reactant channel part of the method. The
state-to-state reaction probabilities for +i HF converge very well with respect to the size of the strong-
interaction region, demonstrating that the TAHRPD method is robust enough to be applied to a wide range

of chemical reactions, including those in which the dynamics are influenced by a long-range potential energy
surface.

1. Introduction interaction wave function is now enclosed in a box consisting
of the absorbing potentials and the repulsive walls of the
(interaction) potential. The size of the box is a convergence
parameter, which may be increased until the cumulative reaction

The time-independent wave packet reactammbduct decou-
pling (TIW—RPD) methodl is a new method for solving the
nuclear dynamics Schroedinger equation for state-to-state reacy o apilities have converged to the desired accuracy.
tive scattering. The method is the first application to state-to- vV v P d Zhath developed f
state reactive scattering of a result obtained several years ago ery recently, meng an ahpave developed a way o
by Seideman and Millet,who showed that, when calculating extendlr)g the method of Ne'uha'user et al, so.that, qfter
the cumulative reaction probabilities, it is possible to calculate caI(_:uIat!o_n of th_e wave func_tlon in the reactant-interaction
the wave function in the strong-interaction region (in which the region, it Is possible to re-emit the absorbed parts of the wave
exchange of atoms occurs) without calculating the wave function fgncnon and propagqte t_hem down the product channel. This
in any of the reactant and product channels (in which energy is yields the wave function in the product channel, and hence the

redistributed among the reactants or products but in which no state-to-state reaction probabilities. Peng and Zhang call their

exchange of atoms occurs). In the THRPD method, the wave method the reactaﬁpro_duct decoupling (RPD) ’T‘eth"d* be-
function is calculated separately in the strong-interaction region cause the calculation in t_he _product chanr_lel IS c_omple’gely
and in each of the reactant and product channels. decoupled from the calculation in the reactant-interaction region.
The method of Seideman and Miller made use of a method __The TIW—RPD methodlis an extended version of Peng and
that had previously been developed by Neuhauser &faal. _Zhangs_ RPD r_net_hod, whereby the (_:alculatlon in Fhe reactant-
calculating the total (initial state selected) reaction probabilities. INteraction region is further decoupfedto a calculation in the
In any chemical reaction there exists a “point-of-no-return” at reactant channel and a calculation in the strong-interaction
the start of each product channel, beyond which, to a given r€gion. In the latter, the wave funptlon is enclosgd in a box,
degree of accuracy, the flux of the wave function is entirely €xactly as in the method of Seideman and MiflerThe

outgoing. Neuhauser et al. showed that, by placing absorbingcalculations are perforn;ed .within th.e time-independer.]tlwave
potentials after the points-of-no-return, it is possible to calculate Packet (TIW) formalisnt;”which permits the use of an efficient

the wave function in thesactant-interaction regiofthe region ~ Wave packet propagaf6tbased on the Chebyshev propagafor.
of coordinate space enclosing the reactant channel and the stronfull details of the TIW-RPD method and of the propagator
interaction region) and thereby to obtain the total reaction May be found inrefs 1 and 8. A summary of the method is
probabilities. In the method of Seideman and Mifean also given in this paper (section 2A), along with a description
additional absorbing potential is placed at the start of the reactant®f & néw development to the reactant channel part of the method
channel beyond the point-of-no-return, so that the strong- (S€ction 2B).

The main purpose of this paper is to report an application of
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in the flux—flux autocorrelation method (for calculating cumu-
lative reaction probabilities) of Seideman and MifleThe other
partitioning potentiaWgs is taken, in this papéf to be a real,
reflecting potential that prevents the initial wave packgtit
Figure 1) from reaching the boundaries of theegion. (We
shall discuss the choice @ysin section 2B below.) Additional
absorbing potential¥, andV, are placed at the ends of the
reactant and product channels; these am partitioning
potentials-they simply prevent the wavepacket reflecting off
the grid boundaries.

The wave function in each of the regiopsq, r, ands is
calculated by solving a completely decouptade-independent
wave packet (TIW) equation. Starting with the formal solution
Figure 1. Schematic illustration of how the TIWRPD method %) = U(t)(0) to the time-dependent Schroedinger equation,

decouples the reaction dynamics in the strong-interaction regjon (- the T|W equation, obtained by taking a half-Fourier transform,
from the dynamics in the reactant channebfds) and the product is

channel f). The shaded areas represent the partitioning poteitga)s
Viq, andVyq (see text). The dashed line connects the reactant and product

points-of-no-return. EE) = Zi—nGJr(E)X(O) (1)

we tested the method in ref 1), the & HF reaction has a
long-range potential energy surface, with wells in both the
reactant and the product channel, and a double barrier in the
product channel. Previous calculations of the state-to-state
reaction probabilities by @as et af* and Park_er et aiqz.. Lippmann-Schwinger solution of the time-independent Schroe-
showed that the surface is capable of supporting long-lived dinger equation

Feshbach resonances, which can extend outward down both the o .

product and the reactant channel. ThetLHF reaction is thus In the TIW-RPD method, eq 1 is taken to be the TIW
a particularly challenging reaction on which to test the HW
RPD method. When presenting the results (Section 3A), we
pay close attention to how the size of the box (enclosing the
strong-interaction region) affects the resonance peaks observed n T

in the state-to-state reaction probabilities. We discuss the results £ (B)=5_Gs (B )
in Section 3.B and conclude the paper in Section 4.

Note that the causal Green’s opera®i(E) is the half-Fourier
transform of the time-evolution operatd(t). It can be showh

that, between the initial wave packgD) and the (interaction)
potential, the TIW wave functiog*(E) is proportional to the

equation corresponding to the nuclear dynamics Schroedinger
equation for reactive scattering. Rather than solve this equation
directly, we solve the set afecoupledequation&*

£y (B) = =Gy (BWyé( ' (B) (3)
2. Time-Independent Wave Packet ReactartProduct
Decoupling Method £ (E)= -G (BT 4(B)&, (B) (4)
— +Ey — + +
A. Summary of the Method. In the TIW—RPD method, é:p (E)=-G (E)qu(E)«Sq (E) foreachp (5)

the coordinate space of a reaction witlproduct arrangements

is partitioned intoP + 3 overlapping regions, which we may Here Gs*(E) is the Green's function corresponding to the
label thep, g, r, andsregions. There arB pregions, each of  HamiltonianH + W,s and Gq*(E) is the Green’s function
which encloses one of the product channels, and one each ofcorresponding to the Hamiltoniat + I'q(E) + 3 plpo(E). The
the g region, which encloses the strong-interaction region, the 1'(E) terms in this expression and in eqs 4 and 5 are the
r region, which encloses the reactant channel, and tegion, absorbing potential¥,q andVyq multiplied by functions of the
which also encloses the reactant channel. Jtegion is used total energyE.’®> It may be showh8 that, to a given degree of
to propagate the initial wave packet down the reactant channelaccuracy (which increases as the points-of-no-return are moved
toward the strong-interaction region; theregion is used to outward), the solution§;"(E), . = p, q, r, s, add up to give
propagate the inelastically scattered component of the wave

packet back down the reactant channel. The partitioning is £'E) = gs+(E) + §q+(E) + §r+(E) + z§p+(E) (6)
illustrated schematically in Figure 1, for the simplest example B

of a two-dimensional reaction with one product chaneH o . .
1). and that each solution is confined to the correspongirgy r,

sregion of Figure 1. Solving each of eqs-2 thus yields the
each of which representsgartitioning potential The latter ~ Component of™(E) in either the reactant channeisf(E) +
are artificial potentials that either reflect or absorb the wave & (E)], the pth product channel &7(E)] or the strong-

packet so as to keep it within a given region: the overlap of the interaction regiong"(E)]. _
wave packet with a partitioning potential is stored on disk and Ve have developed an efficient metA6df solving egs 2-5
is subsequently retrieved to act as a source term for a wavethat is based on the Chebyshev propagttdEach component

packet propagation in another region. The potent&jsand &7(B), 2 =p, q.r s is expanded as

The regions overlap at the shaded aréag Viq, and Vyy,

Vpq are (the moduli of) negative imaginary absorbing potentials, N
which are placed after the pomts-of-no-retu_rn at the start of the §A+(E) — . e_'n¢’7/1n i=p,qr,s (7)
reactant and product channels. Together with the repulsive walls 2 7AH sin ¢/&

of the reactive potential energy surface, the potenif@gsand ~ ~
Vpq completely enclose the strong-interaction region, as is donewhere¢ = cos* [(E — H)/AH], and H and AH are scaling
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parameters, chosen such that the spectrurbflgfn = (H — 0035] i =0, j<0 0.035 =0, j=1
H)/AH is confined to |1, 1]. The functionsy,, are prop- oosol A4 0.030
agated by a set of Chebyshev-like recursion relations, in which _ o.025] ,. 0.025
the action of the (normalized) Hamiltoniayom, is evaluated = 0.0204 = 0.020
within the appropriate, g, r, or sregion of coordinate space. é 0.015 é 0.015
The recursion relations used in this paper are given in the & 0010, & 0010
Appendix. 0.005{ Al ; 0.005 A A
After egs 2-5 are solved, the state-to-state reaction and  ®° 47 o5 o8 o7 0000 05 o6 o7
inelastic probabilities are extracted frafg"(E) and & (E) + Energy (Ev) Energy (Ev)
s"(E). To a given accuracy, these probabilities can be ) )
. . 0.035- v=0, j=2 0.0354 v=0, j=3
converged to the numerically exact results (which would have ' 0.030] A
been obtained by solving eq 1 directly), simply by increasing 0.025] 0.025]
the size of they region until the points-of-no-return are located % 0.020] f: 0.0201
far enough down the reactant and product channels. In section § o.015] 3 o015
3 we report the results of testing this convergence on thé Li & o.010] < 0.010
HF reaction. 0.0051 , 0.005
B. Basis Sets and CoordinatesWhen each of eqs-25 is 0.000*—m— = ; YR 0000 s oe o7
solved, the action of the Hamiltonian needs to be evaluated Energy (EV) Energy (Ev)
within just one of the regiong, g, r, s and can thus be
represented in terms of the coordinate system and basis set tha %935 v=0.i=4 0035 V=L =0
best describe the dynamics in that region. One expects the %] 0030
. . . 0.025 0.025
and p regions to require much smaller basis sets thanghe 2z ' Z 0 020]
region, since it is in they region that the exchange of atoms g '] T 0015
takes place. In each of theandp regions, the atoms remain & 1 £ o010
in either the reactant or thath product configuration, so that 0.005] 0.005
an efficient basis set can be constructed from the isolated .00 AL 0.000 ¢
reactants or products. In theregion the basis set must in 04 05 06 07 04 05 08 07
Energy (Ev) Energy (Ev)

general be a mixture of theand theq basis sets, since tre _ ) o )

region encloses the reactant channel plus part of the Strong_'(:Igjlﬁozr'thsetaLtieJ-rtoﬁsFt?tejr()eaCtBE(pr?)t)ibmtlgzgi; Oé éfcjla(ige(rby

. . . . . v, Vo, Jo) — v, ’

interaction region (where it overlaps_thaeglon atWeg) - the TIW—RPD method (solid line) and taken from the results 6{jas
Inrefs 1 and 9, we developed basis sets and coordinates forg; 41 (dashed line).

solving eqgs 25 in the general case of thé € 0) A + BC —

AC + B reaction. Thes, r, andq Hamiltonians are represented  gynamics in the strong-interaction part of theegion can be

in terms of reactant arrangement ¢ABC) Jacobi coordinates,  constrained such that the atoms remain in the+ABC

and thep Hamiltonian is represented in terms of product configuration throughout the entigregion. We choose Ws
arrangement (ACH B) Jacobi coordinates. Each Hamiltonian of the form

takes the well-known form
WqS(R, r,0)= V(Rqs, r,0)—V({Rr, 0+ V,amp(R) 9)

2uR R 2mr arzr 2uR? * 2mr? J whereRgsis the reactant point-of-no-return (located to the right
V(R 1, 6) (8) of Wys in Figure 1),V(R, r, 6) is the potential energy surface

(of the reaction), an¥/ramdR) is a reflecting ramp. It can be

whereR is the distance between A (B) and the center of mass S€€N that, with this choice dfVys the potential in the total
of BC (AC); r is the bond length of BC (AC)0 is the angle ~ HamiltonianH + Wes is equal toV(R, r, 6) for R > Rys and
betweenR andr; and « and m are the appropriate reduced Y(Ras I 0) + ViamdR) for R < Rqs  This potential keeps the
masses. In each region, tRecoordinate is represented by a &toms within the At BC configuration and prevents the wave
discrete distributed approximating functiotfal8 (DAF) rep- packet from hitting the edges of tisregion grid.
resentation, which consists of a grid of equally spaced discrete W€ €mphasize that, even with the above choickVef the
points along thek coordinate. The coordinate is represented ~ Selutions of eqs 25 still satisfy eq 1 (to the same degree of
by a GaussLegendre discrete variable representdfi¢bVR). accuracy), because the componentin(E) that is reflected
Ther coordinate is represented by different grid representations (@tificially) down the reactant channel [bamdR)] is canceled
in different regions: In theq region, ther coordinate is  °ut by an equal and opposite componen£in(g).
represented by a discrete DAF, similar to the one used to L . .
reSresentR. Iz the r and p regions, ther coordinate is 3. Application to the Li + HF Reaction (for J = 0)
represented in terms of a DVR, obtained from the vibrational ~ A. Numerical Details. We calculated state-to-state reaction
wave functions of either BC or AC. probabilities and inelastic probabilities for the=€ 0) Li + HF

We now depart from ref 1 and show how the DVR used to — LiF + H reaction, applying the TIWRPD method as
represent the coordinate in ther region can also be used summarized above. Selected results are presented in Figure 2
(efficiently) to represent the coordinate in thes region. As (state-to-state reaction probabilities) and Figure 3 (state-to-state
we mentioned above, the basis set in theegion must, in inelastic probabilities).
general, describe the dynamics in the reactant channel, where The numerical parameters used in the calculation are given
the atoms remain in the A BC configuration, plus the more in Table 1. Most of these parameters are either self-explanatory
complicated dynamics in the part of the strong-interaction region or have been defined in Section 2. The wave packet parameters,
that overlapsWys If Wgs is suitably chosen, however, the Xo, X, andkay, are defined such that the initial wave packet is

=_h_28_2 _h_Za_Z +’h2 hz :2
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Figure 3. State-to-state inelastic probabilitif§vo = 0, jo = 0) — (v,
j)] for the Li + HF(vo, jo) — LiF(v, j) + H reaction, calculated by the
TIW—RPD method.

TABLE 1: Grid, Wave Packet, and Expansion Parameters
Used To Calculate the Results in Figures 2 and33

grid dimensions grid points test functions
Rmin Rmax I'min I'max NR Nr NH RO R kav
s 40 180 07 35 164 6 30 135 0.25 16.0
g 1.2 80 07 80 79 81 30
r 50 180 0.7 35 152 6 30 135 0.25 16.0
p 50 150 15 40 111 6 30 105 035 6.0
expansion paras damping paras initial wvpkt
N H AH Rw Ry Ro R Kav
9000 0.75 0.75 1.0 3.0 135 0.25-16.0

a All parameters are given in atomic units. The labgls|, r, ands
refer to the regions illustrated schematically in Figur&gis the width
of the reflecting potentialys; Ry is the width of each of the absorbing
potentialsV,, Vy, Viq, and Vpq. All other parameters are either self-
explanatory or are defined in the text.

given by
X’Volo(RY r, 6|0) =
1 ~R-RY)’

ex

e

whereg,,(r) is a vibrational wave function of HF an@(6)

exp(k. ¢, (NP, (6) (10)

is a Legendre polynomial. Similar wave packets were employe
as “test functions”, with which to perform the final state analyses

of £&,7(E) and&(E) + &(E). Details of this procedure and

of other aspects of the calculation not discussed here may be

found in ref 1.

The absorbing potentialq, Vpg Vi, andV, were all taken
to be cubic ramps of the form given in ref 1. The reflecting
potential, Wgs, took the form given in eq 9, with the ramp
function ViamdR) being taken as

Vram[(R) =0 R> Rqs
R = Ry

As discussed above, this choice Wfs allows us to use the
same basis set in theregion as in the region.

=05 (11)
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Figure 4. Cut through the Li+ HF — LiF + H potential energy
surface, plotted as a function of the reactant (ki HF) Jacobi
coordinatesk andr, at & = 74°. Four different sizes of thg region

are shown, which are enclosed by the dashed lird¥g.I The vertical

lines pass through the reactant points-of-no-return, and the horizontal
lines pass through the product points-of-no-return.

Convergence tests performed with respect to the numerical
parameters given in Table 1 showed that the results of Figures
2 and 3 have converged to within better than a few percent.
Note that, in thep, r, ands regions, only 6 quadrature points
were required along the coordinate, since, as expected, the
DVRs obtained from the HF and LiF vibrational wave functions
act as very efficient basis sets.

In Figure 5, we present a selection of results showing how
the [(vo = 0, jo = 0 — (v = 0, ] = 0)] reaction probabilities
converge with respect to the reactant and product points-of-no-
return. These calculations used the same grid spacings in
andr as the results of Figure 2, and a coarser grid spaciry in
(for which Ny was set to 20). Similar convergence to that shown
in Figure 5 was also found in the other (state-to-state) reaction
probabilities and in the inelastic probabilities.

To be consistent with the recent calculation 6 et al1t
we employed the Li+ HF potential energy surface calculated
by Parker et al? and slightly modified by Ggtas et al! We
include the state-to-state reaction probabilities calculated by
Gogtas et al. in Figure 2.

B. Results and DiscussionAs we show in Figure 4, the
potential energy surface for the B HF — LiF + H reaction
has a long-range tail, with a well and a double barrier located
along the product channel, and another well located along the
reactant channel. These features are kridwhto support
Feshbach resonances, which can extend down both the product
and the reactant channel. When applying the HRPD
method to Li+ HF, therefore, one could expect poor conver-
gence with respect to the location of the points-of-no-return

d (PNRs), since, at a given resonance energy, the PNRs would

have to be moved outward until tiggstrong interaction) region
enclosed the tail of the resonance wave function.

It is evident from Figure 5a,b, however, that the state-to-
state reaction probabilities have converged very well with respect
to the location of the product channel PNR. Similar conver-
gence (not reported here) was obtained for the reactant channel
PNR. As the PNR is moved outward from 4 to 5 au (Figure
5a), the fine structure of some of the resonances (for example,
the peak located around 0.56 eV) changes only slightly. On
moving from 5 to 6 au (Figure 5b), smaller changes occur at
the same energies as when moving from 4 to 5 au. Figure 5c
shows that even when the reactant and product PNRs are moved
in to 4.25 and 2.5 au, the results are in good qualitative
agreement with the results obtained with the reactant and product
PNRs at 5 and 6 au.
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a gg35] 000 e I TIW—RPD calculation. Small differences between the two sets
of results can also be expected to arise from the finite lengths
of the absorbing potentials.

£ In addition to the work of Ggtas et al., accurate three-

§ dimensional calculations on the H HF reaction have also

2 been reported by Parker et’dl. Our state-to-state reaction
probabilities (and hence those of @ias et al.) differ qualita-

ool . tively from those of Parker et al. at all energies above about
0000 05 08 07 0.43 eV. We suggest that the results of Parker et al. were not
Energy (EV) converged_above 0.43_¢V. _Parker et al. also reported state-to-
state reaction probabilities in the 0:28.35 eV energy range,

b ooas] e - which consisted of a set of very narrow resonance peaks. We

) have not attempted to reproduce these results here, as the long
0.0301 — ! lifetimes of the resonances would have required very long

2 0025 ‘ propagation times. At a later date, we intend to incorporate

= 0.020 the TIW—RPD method into a filter diagonalizati#hmethod,

S 0.0157 | which will enable us to calculate such very narrow resonances

& 0.0101 efficiently.

0.005-
0.0004— : : i 4. Conclusions
04 05 06 07
Energy (Ev) In this paper we have applied the TMRPD method to the
Li + HF — LiF + H reaction. The resulting state-to-state
C 0.035] reaction probabilities are found to be very stable with respect
0.0301 to the locations of the reactant and product points-of-no-return,

. 0.025] even though the Li+ HF potential energy surface is known to

£ .020] support long-lived Feshbach resonances that extend down the

§ 0.0151 reactant and product channels. Accurately converged state-to-

2 0.0101 state r(_aaction_ probabilities_ are obtained wit_h the strong-

0'005_ interaction region enclosed in a box of dimensions 8 au.
' | \ Good qualitative results are obtained with a box of dimensions
0.000 04 05 06 07 1.5 x 2.25 au. These dimensions should be contrasted with
Energy (EV) the asymptotic radii of the reaction, which were taken as 10.5
. ) ) and 13.5 au.
Figure 5. Convergence of th&(vo = 0, jo=0) = (v =0,j = 0)] The results clearly demonstrate that the FFRPD method

probabilities with respect to the size of the strong-interactipmegion. . . . . .
Each plot compares the results of two TRRPD calculations that IS robgst enough to be applied to reactions in \.thh the
differed only with respect to the locations of the points-of-no-return. dynamics are influenced by a long-range potential energy

The points-of-no-return were located as indicated in Figure 4 by the surface. At energies at which there is a resonance extending
labels (a) Il and IIl, (b) I and II, and (c) | and IV. down the reactant and product channels, the partitioning of

coordinate space (employed in the ThRPD method) ap-

For the Li+ HF reaction, then, the application of the THwW proximates the resonance wave function by imposing outgoing
RPD method is very stable with respect to the location of the boundary conditions on it at the points-of-no-return. Although
points-of-no-return. The calculation is evidently yielding good this alters the fine structure of the resonance peaks (in the state-
approximations to the resonance wave functions, even though,to-state reaction probabilities), it does not alter the height, shape,
at some resonance energies, the wave function is undoubtedlyand position of the peaks. A similar effect, we assume, is also
being truncated by,q andVpq The effect of truncating the  found when calculating cumulative reaction probabilities by the
wave functions alters the fine structure of some of the resonanceflux—flux autocorrelation (FFA) method of Seideman and
peaks but does not significantly alter the position, height, or Miller,? as the accuracy of both the FFA and the TRRPD
shape of the peaks. method depends on how well the total flux out of the strong-

Given the good convergence with respect to the points-of- interaction region has converged.
no-return (and with respect to the other parameters), it is In future work we shall combine the TIWRPD method with
somewhat surprising that the TRARPD results differ fromthe  efficient basis sets and coordinate systems (probably based on
results of Ggtas et al! by as much as 20% (see Figure 2). hyperspherical coordinatég?, and will develop efficient
Regarding the position, shape, and relative heights of the peakstechniques for solving the strong-interaction part of the calcula-
the results are in excellent agreement, as may be seen bytion. This will enable us to calculate state-to-state reaction
comparing, for example, the sharp dip in the {80L0) reaction probabilities for a variety of four- and five-atom reactions that
probabilities at 0.52 eV. We suggest that the wave packet is are presently intractable by other methods.
being propagated correctly in both calculations but that a
numerical error in the final state analysis part of one of the  Acknowledgment. We offer our congratulations and best
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